

# Pín Joínted Frames

Gebríl El-Fallah

EG1101 – Mechanical Engineering – Mechanics of Materials



# **Rigid Body**

Rigid Body defined as:



- Solid Body whose Deformation is either Zero or Negligible i.e. Deformation so small that it can be ignored
- Distance between any 2 Points in Body effectively Constant Regardless of any External Forces
- Rigid Body considered as Continuous Distribution of Mass



#### Statics

- Concerned with Analysis of Loads (Force and Torque, or 'Moment')
- Forces assumed to be in equilibrium (balance) within a body
- Body does NOT experience an Acceleration ( $\underline{a} = \underline{0}$ )
- Condition known as 'Static Equilibrium'
- System is 'at rest' or 'moving at a constant velocity'
  - e.g. Stationary Objects

Buildings, Bridges etc.

Objects in Stable Motion (constant velocity)

Aircraft in stable flight, Car cruising on motorway etc.



# Static Equilibrium

Thus, for 'Static Equilibrium' Conditions

No Linear Acceleration of the Body  $\sum_{i} \underline{F}_{i} = \underline{0}$ 

No Angular Acceleration of the Body  $\sum_{i} \underline{M}_{i} = \underline{0}$ 



#### Moment of a Force

Force can also ROTATE a body about an AXIS or Point

Rotational Tendency known as: *Moment* (<u>M</u>) of the Force

(Moment can also be referred to as *Torque*)



### Moment of a Force



<u>Magnitude</u> of the Moment of Force (M) about Point O given by:

$$M_0 = F.d$$

where

F is the Magnitude of Applied Force

*d* is **perpendicular** distance from the

line of action of the Force

Note: Sign Convention for direction of Moments must be consistent in a given calculation



### Moment of a Force



In Vector Format, Moment (<u>M</u>) given by the **Vector Cross Product**:

$$\underline{M}_O = \underline{r} \times \underline{F}$$

where

 $\underline{F}$  is the Force Vector

 $\underline{r}$  is the radius vector from the Point O to the line of action



- Shows the Forces and Moments on a Body
- Enables Calculation of the Resulting Reaction Forces
- Used to Determine the Loading of Individual Structural Components
- Also Calculates Internal Forces within a Structure
- Essentially a **VECTOR** diagram of all localized Forces
- Condition of Static Equilibrium assumed
  - i.e. Sum of Forces and Moments must be zero



- Simplified Version of Structural Component
  - Often a Point, Line or Box
- Forces shown as Arrows pointing in direction they act on Body
- Moments shown as Curved Arrows in direction they act on Body
- Coordinate System
- Reactions to Applied Forces also Shown



- Typically Provisional Free Body Diagram drawn before all Forces and Reactions are known so that unknowns can be evaluated
- Constraints replaced by Reaction Forces
- Note: If External Forces are small  $\rightarrow$  Can Be Neglected
  - Buoyancy forces in Air
  - Atmospheric Pressure
- Free Body analysed by Summing all the Forces
  - Resolved into the coordinate system directions
  - Net Force in any direction is Zero for Static Equilibrium:  $\sum F_x = 0$   $\sum F_y = 0$
  - Net Moment is Zero for Static Equilibrium:  $\sum M = 0$



#### A free body diagram consists of:

- A coordinate system
- A simplified version of the isolated body
- Forces shown as straight arrows pointing in the direction they act on the body
- Moments shown as curved arrows pointing in the direction they act on the body
- Supports are replaced by reaction forces and moments

Free body diagrams can easily be constructed for simple problems



# Free Body Diagrams: Simple Example



**Pin Jointed Frames** 

# Free Body Diagrams: Simple Example

#### **Balance of Forces**

Along Axis of Bar BC

$$F_{B,y} - F_{C,y} = 0$$

#### **Balance of Moments**

Taking Moment about Point B Length of Bar BC is  $l_{BC}$ 

$$0 + 0 + 0 + F_{C,x}$$
.  $l_{BC} = 0$ 

Note:  $F_{C, y}$  is a force in the negative *y*-direction

Which Implies  $F_{C,x} = 0$ 

Similarly  $F_{B,x} = 0$ 

if we take Moment about Point C.

Conclusion: a solid bar (member) in a pinjointed structure does not carry any forces <u>perpendicular</u> to the axis of the bar

#### Pin Jointed Structures

Free to Rotate at the Joints between Structural Members

 Solid Bar (member) in a Pin-Jointed Structure does not carry any Forces perpendicular to the axis of the bar

### Pin Jointed Structures: Simple Example

Taking Joint B as a Free Body Diagram







Encastre

# Pin Jointed Structures: Simple Example

#### At Point B

Balance of Forces in *x*-direction

 $F + F_{BC}\sin\alpha - F_{AB}\sin\alpha = 0$ 

Balance of Forces in *y*-direction

$$-F_{BC}\cos\alpha - F_{AB}\cos\alpha = 0$$

which gives:

$$F_{AB} = -F_{BC}$$



Pin Jointed Structures: Simple Example

Then, By Substitution

$$F + F_{BC} \sin \alpha + F_{BC} \sin \alpha = 0$$

giving

$$F_{BC} = -\frac{F}{2.\sin\alpha}$$

thus

$$F_{AB} = -F_{BC} = \frac{F}{2.\sin\alpha}$$



**Pin Jointed Frames**